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This article addresses the Falkner-Skan flow of an incompressible Walter-B fluid. Fluid flow
is caused by a stretching wedge with thermal radiation and prescribed surface heat flux.
Appropriate transformations are used to obtain the system of nonlinear ordinary differen-
tial equations. Convergent series solutions are obtained by the homotopy analysis method.
Influence of pertinent parameters on the velocity, temperature and Nusselt number are in-
vestigated. It is observed that by increasing the viscoelastic parameter, the fluid velocity
decreases. There is an enhancement of the heat transfer rate for the viscoelastic parameter
and power law index. It is also found that the Prandtl number and radiation parameter
decrease the heat transfer rate.
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1. Introduction

Non-Newtonian materials in view of its complex constitutive expression yield much more com-
plicated and higher order differential systems when compared with viscous materials. Such com-
plexities in differential systems are due to additional rheological parameters appearing in the
constitutive relationships. Even a simpler constitutive equation like for Walter-B gives rise to
nonlinear boundary initial value problems which are far from trivial. These boundary value pro-
blems have great interest of researchers from different quarters. For example Chang et al. (2011)
numerically analyzed the free convective heat transfer in viscoelastic flow of Walter-B fluid. Na-
deem et al. (2015) examined oblique flow of Walter-B fluid in presence of magnetohydrodynamics
and nanoparticles. Nandeppanavar et al. (2010) explored stretched flow of Walter-B liquid in
presence of non-uniform heat source/sink. Hakeem et al. (2014) extended such analysis in pre-
sence of thermal radiation. Stagnation point flow and Blasius flow for Walter-B liquid were also
addressed by Madani et al. (2012). Hayat et al. (2014a, 2015c) examined heat transfer in flow
of Walter-B fluid over a surface with Newtonian heating and convective condition. Talla (2013)
studied the flow of Walter-B fluid bounded by an exponentially stretching sheet. Peristalsis of
Walter-B fluid in a vertical channel was studied by Ramesh and Devakar (2015).

Falkner-Skan flow is quite popular in fluid mechanics. It is a flow past a wedge placed
symmetrically with respect to the flow direction. These types of flows occur frequently to increase
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oil recovery and in packed bed reactor geothermal industries. Interest of recent researchers in
boundary layer flow over a continuos moving surface with prescribed surface heat flux has
increased so much. These type of flows have many applications in industrial and metallurgical
processes such as glass fiber, wire drawing, paper production and metallic plate cooling in cooling
bath, etc. Falkner and Skan (1931) presented some approximate solutions for the boundary
layer equation. Yacob et al. (2011) studied the Falkner-Skan problem for a static and moving
wedge with prescribed surface heat flux in a nanofluid. Falkner-Skan flow of the Maxwell fluid
with mixed convection was analyzed by Hayat et al. (2012). Khan and Pop (2013) examined
the nanofluid flow past a moving wedge. Abbasbandy et al. (2014b) discussed numerical and
analytical solutions for MHD Falkner-Skan flow of the Maxwell fluid. Hendi and Hussain (2012)
found the solution for MHD Falkner-Skan flow over a permeable sheet. Fang et al. (2012) studied
the momentum and heat transfer in Falkner-Skan flow with algebraic decay. Su and Zheng
(2011) presented the approximate solution of MHD Falkner-Skan flow over a permeable wall.
Abbasbandy et al. (2014a) worked for Falkner-Skan flow of an Oldroyd-B fluid in presence of
the applied magnetic field.

The radiation effect in boundary layer flow has much importance due to its applications
in physics, engineering and industrial fields such as glass production, furnace design, poly-
mer processing, gas cooled nuclear reactors and also in space technology like aerodynamics
of rockets, missiles, propulsion system, power plants for inter planetary fights and space crafts
operating at high temperatures. Heat transfer through radiation takes place in form of elec-
tromagnetic waves. Radiation emitted by a body is a consequence of thermal agitation of its
composing molecules. Hayat et al. (2013c) worked on mixed convection radiative stagnation
point flow in presence of convective boundary conditions. Hayat et al. (2013b) also discus-
sed the effect of thermal radiation in MHD flow of thixotropic fluid. Pal (2013) analyzed the
effects of thermal radiation, Hall current and MHD in flow over an unsteady stretching surfa-
ce. Bhattacharyya et al. (2012) analyzed the flow of micropolar fluid over a porous shrinking
sheet with thermal radiation. Hayat et al. (2013a)studied the three-dimensional MHD flow of
Eyring-Powell fluid with radiative effects. Rashidi et al. (2014) discussed the influence of ther-
mal radiation in MHD mixed convective flow of a viscoelastic fluid due to a porous wedge.
Bhattacharyya (2013) presented the MHD Casson fluid subject to thermal radiation. Sheikho-
leslami et al. (2015) adopted a two phase model for MHD flow of a nanofluid with thermal
radiation.

The aim of present study is to venture further in the region of Falkner-Skan flow of a non-
-Newtonian fluid. Thus flow formulation here is based upon constitutive relationship of Walters-
B fluid. Analysis of heat transfer is carried out in presence of heat flux and thermal radiation.
Transformation procedure has been used for the reduction of partial differential systems to
ordinary differential systems. The homotopy analysis technique has been implemented for the
development of convergent series solutions. Influences of pertinent parameters on the velocity,
temperature and Nusselt number are pointed out.

2. Problem formulation

We consider the steady two-dimensional Falkner-Skan flow of an incompressible Walter-B fluid.
Heat transfer analysis is carried out in the presence of prescribed surface heat flux and thermal
radiation. The fluid flow is induced via stretching a wedge moving with the velocity Uw = cx

n

and the fluid flow being confined to y  0. Let T∞ be ambient temperature. The relevant
boundary layer equations are (Hakeem et al., 2014)
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The corresponding boundary conditions are (Yacob et al., 2011)

u = Uw = cx
n v = 0

∂T

∂y
= −
qw

k
at y = 0

u→ Ue = axn T → T∞ as y →∞
(2.2)

where (u, v) are the velocities along (x, y) directions respectively, T is temperature, ν is kinematic
viscosity, k0 is elastic parameter, k is thermal conductivity, ρ is density, cp is specific heat, c and
a are the stretching rates and qw the wall heat flux. Radiative heat flux by using Rosseland
approximation is given by

qr = −
4σ∗

3k∗
∂T 4

∂y
(2.3)

where σ∗ is the Stefan-Boltzmann constant and k∗ the mean absorption coefficient. Further, we
assume that the temperature difference within the flow is such that T 4 may be expanded in a
Taylor series. Hence expanding T 4 about T∞ and neglecting higher order terms, we get

T 4 ∼= 4T 3∞T − 3T
4
∞

(2.4)

Using Eqs. (2.3) and (2.4) in (2.1)3, we obtain
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Suitable transformations for the present flow are (Yacob et al., 2011)
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where x is the distance from the leading edge and n the Falkner-Skan power-law parameter.
Using Eq. (2.3), the continuity equation is satisfied automatically and Eqs. (2.1)2-(2.2) take the
form

f ′′′ + ff ′′ +
2n

n+ 1
(1− f ′2)− k1

(

(3n − 1)f ′f ′′′ −
n+ 1

2
ff ′′′′ −

3n− 1
2
f ′′
2
)

= 0

1

Pr

(

1 +
4

3
R
)

θ′′ + fθ′ +
n− 1
n+ 1

f ′θ = 0

(2.7)

and

f(0) = 0 f ′(∞)→ 1 f ′(0) = α

θ′(0) = −1 θ(∞)→ 0
(2.8)

where k1 is the viscoelastic parameter, Pr is the Prandtl number, α is the ratio of stretching
rates and R is the radiation parameter. The dimensionless parameters are defined as follows
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The local Nusselt number in the dimensional form is
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in which qr is prescribed as follows
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The dimensionless form of the Nusselt number is
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3. Homotopic solutions

3.1. Zeroth-order deformation equations

Initial approximations and auxiliary linear operators are taken as follows

f0(η) = η − (1− α)[1 − exp(−η)] θ0(η) = exp(−η)
Lf = f

′′′ − f ′ Lθ = θ
′′ − θ

(3.1)

with
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where ci (i = 1-5) are constants.
Denoting q ∈ [0, 1] as the embedding parameter and ~f and ~θ as the non-zero auxiliary

parameters, then the zeroth order deformation problems are
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3.2. m-th order deformation equations

The m-th order deformation problems are
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The general solutions (fm, θm) comprising the special solutions (f
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where the constants ci (i = 1-5) through boundary conditions (3.6) are
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4. Convergence analysis

The homotopy analysis method has great advantage to adjust the convergence region by selecting
the appropriate values of ~f and ~θ. For this, we plot the ~-curves for the convergence of
velocity and temperature profiles (see Fig. 1). Admissible values of auxiliary parameters are
−0.9 ¬ ~f ¬ 0 and −0.6 ¬ ~θ ¬ −0.2. The solution converges in the whole region of η
(0 ¬ η ¬ ∞) when k1 = 0.2, n = 0.1, R = 1.6, Pr = 1.5 and α = 0.9.
Table 1 shows the convergence of functions f ′′(0) and θ′′(0) at a different order of appro-

ximations. Tabulated values show that the 25-th order of approximations is enough for the
convergence of f ′′(0), and the 22-th order of approximation is appropriate for the convergence
of θ′′(0).
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Fig. 1. ~-curves for f ′′(0) and θ′′(0) when k1 = 0.2, n = 0.1, R = 1.6, Pr = 1.5 and α = 0.9.

Table 1. Convergence of HAM (homotopy analysis method) solutions when k1 = 0.2, n = 0.1,
R = 1.6, Pr = 1.5,α = 0.9, ~f = −0.2 = ~θ

Order of
f ′′(0) θ′′(0)

approximation

1 0.09734 0.8154

5 0.09262 0.8203

10 0.09262 0.4547

15 0.09171 0.4454

20 0.09168 0.4447

22 0.09169 0.4446

25 0.09170 0.4446

30 0.09170 0.4446

35 0.09170 0.4446

40 0.09170 0.4446

45 0.09170 0.4446

5. Discussion

In this Section, we discussed the influences of different physical parameters on the fluid velocity,
temperature and heat transfer rate.

5.1. Dimensionless velocity profile

Figures 2a-2c show the effect of viscoelastic parameter k1, power law index n and stretching
rates ratio α on the velocity profile. Figure 2a depicts the influence of the viscoelastic parameter
on f ′(η). As k1 increases, the fluid velocity decreases which corresponds to a thinner momen-
tum boundary layer thickness. The viscoelasticity produces tensile stress which contracts the
boundary layer and, consequently, the velocity reduces. Figure 2b represents the impact of α
on the velocity profile. Here, the velocity enhances by increasing α. In fact higher values of α
correspond to the stronger free stream velocity which enhances the fluid velocity. The effect of
Falkner-Skan power law index n is graphed in Fig. 2c. It is observed that velocity is an increasing
function of n.

5.2. Dimensionless temperature profile

Figures 3 and 4 show the impact of the Prandtl number Pr, radiation parameter R, viscoela-
stic parameter k1, power law index n and ratio of stretching rates α on the temperature profile.
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Fig. 2. Impact of: (a) k1, (b) α and (c) n on f
′(η)

Fig. 3. Impact of (a) Pr, (b) R, (c) k1, (d) α
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Fig. 4. Impact of n on θ(η)

Figure 3a shows the effect of Pr on the temperature profile. For increasing values of the Prandtl
number, the temperature decreases. Higher values of Pr correspond to low thermal diffusivity,
and the fluid temperature decreases. Figure 3b depicts the behavior of fluid temperature for
the radiation parameter R. This figure shows that the temperature profile enhances when ra-
diation effects strengthen. An increase in the radiation parameter corresponds to a decrease in
the mean absorption coefficient. Hence the rate of radiative heat transfer to the fluid increases.
Figure 3c describes the behavior of temperature for viscoelastic parameter. Fluid temperature
enhances for increasing k1. Figure 3d presents the effect of stretching ratio rates α on the tem-
perature profile. The temperature profile shows decreasing behavior for increasing values of α.
The velocity increases when the ratio of stretching rates enhances. There is less resistance for
fluid particles motion and, consequently, the temperature reduces. Figure 4 shows the effect of
increasing values of n on fluid temperature. The temperature profile and n have a direct relation
with each other.

5.3. Nusselt number

In this Section, we show the effects of different physical parameters on the Nusselt number.
Figures 5a-5d depict the influence of the viscoelastic parameter k1, Falkner-Skan power law
index n, radiation parameter R and Prandtl number Pr. These figures show that by increasing
the viscoelastic and power law index parameters, the rate of heat transfer increases whereas the
Nusselt number shows decreasing behavior for increasing values of the radiation parameter and
the Prandtl number.

6. Conclusions

The Falkner-Skan wedge flow of Walter-B fluid is studied in presence of thermal radiation and
prescribed surface heat flux. Key points of the presented analysis are as follows:

• Fluid velocity is a decreasing function of the viscoelastic parameter and increasing function
of the ratio of stretching rates.

• The Prandtl number and radiation parameter have opposite impact on the temperature
profile.

• For increasing values of the viscoelastic parameter, the temperature enhances.

• The Nusselt number has opposite impact on the power law index and the Prandtl number.
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Fig. 5. Impact of (a) k1, (b) n, (c) R and (d) Pr on NuxRe
−0.5

x
(see Eq. (2.13))

References

1. Abbasbandy S., Hayat T.,Alsaedi A., Rashidi M. M., 2014a, Numerical and analytical solu-
tions for Falkner-Skan flow of MHD Oldroyd-B fluid, International Journal of Numerical Methods
of Heat and Fluid Flow, 24, 390-401

2. Abbasbandy S., Naz R., Hayat T., Alsaedi A., 2014b, Numerical and analytical solutions for
Falkner-Skan flow of MHD Maxwell fluid, Applied Mathematics and Computation, 242, 569-575

3. Bhattacharyya K., 2013, MHD stagnation point flow of Casson fluid and heat transfer over a
stretching sheet with thermal radiation, Journal of Thermodynamics, 2013, 169674

4. Bhattacharyya K., Mukhopadhyay S., Layek G.C., Pop I., 2012, Effects of thermal radia-
tion on micropolar fluid flow and heat transfer over a porous shrinking sheet, International Journal
of Heat and Mass Transfer, 55, 2945-2952

5. Chang T.B., Mehmood A., Beg O.A., Narahari M., Islam M.N., Ameen F., 2011, Nu-
merical study of transient free convective mass transfer in a Walters-B viscoelastic flow with wall
suction, Communications in Nonlinear Science and Numerical Simulation, 16, 216-225

6. Falkner V.M., Skan S.W., 1931, Some approximate solutions of the boundary-layer equations,
Philosophical Magazine, 12, 865-896

7. Fang T., Yao S., Zhang J., Zhong Y., Tao H., 2012, Momentum and heat transfer of the
Falkner-Skan flow with algebraic decay, Communications in Nonlinear Science and Numerical Si-
mulation, 17, 2476-2488

8. Farooq U., Hayat T., Alsaedi A., Liao S. J., 2014, Heat and mass transfer of two-layer
flows of third-grade nano-fluids in a vertical channel, Applied Mathematics and Computation, 242,
528-540

9. Hakeem A.K.A., Ganesh N.V., Ganga B., 2014, Effect of heat radiation in a Walter’s liquid
B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation, Journal
of King Saud University – Engineering Sciences, 26, 168-175



126 T. Hayat et al.

10. Hayat T., Asad S., Mustafa M., Alsulami H.H., 2014a, Heat transfer analysis in the flow of
Walters’ B fluid with a convective boundary condition. Chinese Physics B, 23, 084701

11. Hayat T., Awais M., Asghar S., 2013a, Radiative effects in a three-dimensional flow of MHD
Eyring-Powell fluid, Journal of Egyptian Mathematical Society, 21, 379-384

12. Hayat T., Farooq M., Iqbal Z., Alsaedi A., 2012, Mixed convection Falkner-Skan flow of a
Maxwell fluid, Journal of Heat Transfer, 134, 114504

13. Hayat T., Imtiaz M., Alsaedi A., 2015a, MHD flow of nanofluid with homogeneous-
heterogeneous reactions and velocity slip, Thermal Sciences, DOI: 10.2298/TSCI140922067H

14. Hayat T., Imtiaz M., Alsaedi A., 2015b, Partial slip effects in flow over nonlinear stretching
surface, Applied Mathematical Mechanics, 36, 1513-1526

15. Hayat T., Imtiaz M., Alsaedi A., 2016, Unsteady flow of nanofluid with double stratification
and magnetohydrodynamics, International Journal of Heat and Mass Transfer, 92, 100-109

16. Hayat T., Naz R., Asghar S., Alsaedi A., 2014b, Soret-Dufour effects on MHD rotating flow
of a viscoelastic fluid, International Journal of Numerical Methods of Heat and Fluid Flow, 24,
498-520

17. Hayat T., Shafiq A., Mustafa M., Alsaedi A., 2015c, Boundary-layer flow of Walters’ B fluid
with Newtonian heating, Zeitschrift für Naturforschung A, 70, 5, 333-341

18. Hayat T., Shahzad S. A., Asghar S., 2013b, MHD flow of thixotropic fluid with variable
thermal conductivity and thermal radiation, Walailak Journal of Science and Technology, 10, 29-
42

19. Hayat T., Waqas M., Shehzad S. A., Alsaedi A., 2013c, Mixed convection radiative flow of
Maxwell fluid near stagnation point with convective condition, Journal of Mechanics, 29, 403-409

20. Hendi F. A., Hussain M., 2012, Analytic solution for MHD Falkner-Skan flow over a porous
surface, Journal of Applied Mathematics, 2012, 123185

21. Khan W.A., Pop I., 2013, Boundary layer flow past a wedge moving in a nano-fluid,Mathematical
Problems in Engineering, 2013, 637285

22. Lin Y., Zheng L., Cheng G., 2015, Unsteady flow and heat transfer of pseudoplasticnano-
liquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous
dissipation, Powder Technology, 274, 324-332

23. Madani S.A., Akbar R., Khoeilar R., 2012, On the study of viscoelastic Walter’s B fluid in
boundary layer flows, Mathematical Problems in Engineering, 2012, 861508

24. Nadeem S., Mehmood R., Motsa S.S., 2015, Numerical investigation on MHD oblique flow of
Walter’s B type nanofluid over a convective surface, International Journal of Thermal Sciences,
92, 162-172

25. Nandepanavar M.M., Abel M.S., Tawade J.V., 2010, Heat transfer in a Walter’s liquid B fluid
over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation,
Communications in Nonlinear Science and Numerical Simulation, 15, 1791-1802

26. Pal D., 2013, Hall current and MHD effects on heat transfer over an unsteady stretching permeable
surface with thermal radiation, Computer Mathematical with Applications, 66, 1161-1180

27. Ramesh K., Devakar M., 2015, Effect of heat transfer on the peristaltic flow of Walter-B fluid
in a vertical channel with external magnetic field, Journal of Aerospace Engineering, 10, 04015050

28. Ramzan M., Farooq M., Alhothuali M.S., Malaikah H.M., Cui W., Hayat T., 2015,
Three dimensional flow of an Oldroyd-B fluid with Newtonian heating, International Journal of
Numerical Methods of Heat and Fluid Flow, 25, 1, 68-85

29. Rashidi M.M., Ali M., Freidoonimehr N., Rostami B., Hossain M.A., 2014, Mixed co-
nvective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation,
Advance Mechanical Engineering, 6, 735939



Radiative Falkner-Skan flow of Walter-B fluid... 127

30. Shahzad S.A., Qasim M., Hayat T., Sajid M., Obaidat S., 2013, Boundary layer flow of
Maxwell fluid with power law heat flux and heat source, International Journal of Numerical Methods
of Heat and Fluid Flow, 23, 1225-1241

31. Sheikholeslami M., Ganji D.D., Javed M.Y., Ellahi R., 2015, Effect of thermal radiation
on MHD nanofluid flow and heat transfer by means of two phase model, Journal of Magnetic
Magnetism Material, 374, 36-43

32. Su X., Zheng L., 2011, Approximate solutions to MHD Falkner-Skan flow over permeable wall,
Appllied Mathematical Mechanics, 32, 401-408

33. Sui J., Zheng L., Zhang X., Chen G., 2015, Mixed convection heat transfer in power law fluids
over a moving conveyor along an inclined plate, International Journal of Heat and Mass Transfer,
85, 1023-1033

34. Talla H., 2013, Numerical study of flow of Walter’s liquid B over an exponentially stretching
sheet, International Journal of Scientific and Research Publications, 3, 2250-3153

35. Yacob N.A., Ishak A., Nazar R., Pop I., 2011, Falkner-Skan problem for a static and moving
wedge with prescribed surface heat flux in nano-fluid, International Communications in Heat and
Mass Transfer, 38, 149-153

Manuscript received March 30, 2016; accepted for print May 10, 2016


